Additive Manufacturing Technologies (AMT)
> Zum Inhalt

Multiphoton Lithography

Multiphoton lithography (MPL) or multiphoton processing is an umbrella term for 3D printing methods relying on photochemical reactions triggered by multiphoton absorption (MPA). The most popular approach is the two-photon polymerization (2PP), also sometimes referred to as two-photon-absorbed photopolymerization, two-photon induced polymerization, two-photon lithography, two-photon laser scanning lithography, multiphoton-excited microfabrication, 3D multiphoton lithography, 3D laser lithography or even direct laser writing. Due to multiphoton absorption it allows the realization of complex 3D structures with spatial resolution down to a 100 nm level.

In our most recent effort to demonstrate the capabilities of MPL we have produced a tiny castle (230 µm x 250 µm x 360 µm) directly on a tip of a pencil. Its design was developed in cooperation with Daniela Mitterberger and Tiziano Derme (MäID – FutureRetrospectiveNarrative). The Scanning Electron Microscopy (SEM) image of produced structure appeared on the cover of the recent book “Multiphoton Lithography: Techniques, Materials, and Applications”.

Multiphoton fabrication

Video explaining fabrication of a tiny castle by multiphoton lithography.


Video: Wolfgang Steiger

Music: Tube by SPCZ (

Voice: Angelika Kubacek

In-vivo writing in the presence of C. elegans.


One of the big benefits of 2PP is the possibility to use infrared light for inducing photopolymerization. Since infrared light does not harm living tissue, 2PP facilitates to perform photopolymerization in the presence of living cells or organisms. By using appropriate biophotopolymers 3D-structures can be printed around living tissue, as indicated by this video, where a cellular scaffold is structured around a nematode.